














TABLE I: Gaze ranges in our dataset for experiments.

Horizontal Vertical
Angular range � 19:0� s 27:3� � 29:0� s � 0:5�

Screen pixel range t 500 mm t 300 mm

VI. NUMERICAL EVALUATION

We quantitatively examine the proposed method via exten-
sive experiments. In order to allow direct comparisons with
previous methods and also ensure repeatability, our experi-
ments are conducted on a public dataset proposed in [36].

A. Experimental data

We use the gaze data proposed in [36]. There are totally 50
different subjects included in the dataset. For each of the sub-
ject, eye images are captured from eight different viewpoints,
and there are 160different gaze points on a screen. Therefore,
the total number of samples is 50 � 8 � 160 = 64000. These
gaze data are captured in a common user-screen scenario and
in each session the user keeps a natural but fixed head pose.

The dataset contains a very large amount of data to support
regression-based methods; it collects sufficient data by varying
multiple eye appearance factors to allow regressions for un-
known eye region appearances. However, this is not required
in our experiments since our method belongs to the model-
based category which just cares the iris shape. Therefore, we
extract a subset we need. In particular, we choose 12 subjects.
We also choose the eye images captured by a camera under
the screen because other capture angles in the dataset were set
too large for the sake of multiview synthesis.

Overall, our used dataset contains 12 � 160 = 1920 eye
images. Some statistics for the dataset are shown in Table I.
These numbers are typical and sufficient for a user-screen
scenario.

Note that when testing the SIAF-joint method, since it
assumes temporally stable head poses between occasional head
motions, our current test dataset is somewhat imperfect since it
does not contain head motion in the same session. Therefore,
during head motion, we should refer to the results of the
basic SIAF method instead of the SIAF-joint method. This
should not influence the evaluation much since in common
tasks gaze motion happens more frequently than head motion.
On the other hand, although there are gaze tracking datasets
containing head motion, e.g., Eyediap [43], they are designed
to quickly traverse in different head poses without considering
head motion frequency, and therefore not suitable here. De-
veloping datasets to meet our assumption can be a potential
future work.

B. Gaze estimation accuracy

In this section, we show gaze estimation accuracy for
the proposed SIAF and SIAF-joint methods. Besides, we
also provide results by using the following two methods for
comparison:

Appearance-based3: we implement a recent appearance-
based method [10]. This type of methods require training
samples. However, assuming exact person-specific training
samples for each test subject is too strong in this comparison
since other methods are unsupervised; therefore, we alterna-
tively prepare 99 training samples from 3 other subjects not in
the test dataset and use them as the shared training data. This
strategy is quite similar to another recent work [36] in order
to avoid online training. In this way, this method has been
modified to avoid person-dependent training and represent
the state of the art; however, the person-independent training
data collected beforehand is still an additional requirement
compared to our method.

EyeTab: this method [15] additionally detect features such
as eyelids to extract iris contours more precisely. It is also
calibration-free. However, high resolution eye images and
small eye-camera distances are necessary. Otherwise, like will
be seen, the eyelid/iris detection may frequently fail and there
is a chance that the system cannot give any output.

Ellipse-fitting: this method fits an ellipse to the detected iris
contour edge (Sec. IV-B) by using lease squares criterions,
and recovers 3D gaze directions by examining the shape of
the ellipse (Sec. III-B). In the implementation we use the
proposed image processing techniques to achieve robust iris
detections. Note that there is a binary ambiguity in the solution
as explained before, and we choose the gaze direction pointing
upwards rather than the other one. This method can represent
a category of methods based on ellipse fitting [13], [14]

Gaze estimation results and comparison can be seen in
Table II. The proposed SIAF-joint method achieves the best
accuracy, followed by the appearance-based method4. How-
ever, note that the appearance-based method needs training,
which greatly limits its practicality since performing active
training cost much time and efforts; while the other methods
are unsupervised. The EyeTab method has large errors and
failure rates mainly because the test data was captured only
at a common resolution; it is more suitable to work with high
resolution eye images and small eye-camera distance. Besides,
the SIAF and ellipse-fitting methods achieve similar accuracy.
Both of them in fact benefit from the nicely extracted iris
edge by using our pre-processing in Sec. IV-B. Without good
iris edge extraction, the ellipse-fitting method may perform
extremely poor as shown later in the case study. Finally, the
SIAF-joint method achieves highest accuracy with multiple
aligned eye images while it does not require any training data.
A more intuitive comparison on their average accuracy is given
in Fig. 7

C. Study on individual cases

After comparing the average accuracies, we conduct case
studies to show representative and more intuitive results. All
the results are shown in Fig. 8. They are obtained by using
three methods, i.e., ellipse-fitting, SIAF and SIAF-joint, and

3In particular, here ‘appearance-based’ refers to ‘regression-based’.
4The appearance-based method may achieve higher accuracy under the

condition that it has more training samples. However, requirement on training
is also considered a major drawback of the appearance-based methods.



TABLE II: Comparison on gaze estimation error. Results are obtained by four different methods for twelve subjects.

Subject
Modified ALR [10] EyeTab [15] Robust Ellipse-fitting SIAF SIAF-joint

Avg. err. [� ] Std [� ] Avg. err. [� ] Std [� ] Avg. err. [� ] Std [� ] Avg. err. [� ] Std [� ] Avg. err. [� ] Std [� ]
S1 10.17 2.15 17.71 10.63 14.89 6.37 14.78 9.64 7.85 3.54
S2 12.26 4.09 21.57 10.97 15.77 14.64 16.44 14.59 8.38 12.33
S3 5.27 2.60 18.11 10.14 13.60 4.91 11.44 8.08 6.95 3.60
S4 4.33 2.20 18.58 9.88 10.84 4.31 12.57 7.88 6.08 3.72
S5 14.13 2.31 18.74 9.82 17.08 11.21 13.26 8.88 7.05 3.38
S6 6.81 4.26 20.83 11.98 16.00 9.69 16.79 13.00 4.59 2.97
S7 15.40 3.12 16.21 9.97 23.07 15.00 18.72 11.38 4.32 2.13
S8 6.73 4.37 22.50 9.40 25.04 19.60 18.31 14.17 7.52 3.89
S9 8.53 2.08 18.56 12.02 10.96 6.59 13.92 11.64 4.34 2.49
S10 14.45 3.08 18.86 8.75 10.87 6.80 13.22 7.53 9.53 4.87
S11 17.03 6.42 21.44 10.78 13.38 12.05 17.16 11.76 8.36 7.21
S12 13.69 6.14 16.42 10.98 14.64 7.79 12.26 7.85 7.89 3.37

Average 10.73 3.57 19.13 10.44 15.51 9.91 14.90 10.53 6.91 4.46

Notes
Use person-independent

training data
Average no-output

rate: 13:02%
Based on the proposed

iris edge detection
Independent computing

for each image
Joint optimization
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Fig. 7: Comparison on average gaze estimation error.

they correspond to six different eye images. Estimated iris
contours and 3D gaze directions are plotted in the images for
better visualization, and the PGMs are also given to show their
relation to the fitting quality.

Among all cases, (a) and (b) are considered normal ones,
where all methods obtain similar and accurate results; (c), (d)
and (e) are more challenging cases, where the ellipse-fitting
method may fail, and even the SIAF method can produce
large errors. The reason is that in these cases, the iris contour
regions are heavily occluded by eyelids. On the other hand,
the SIAF-joint method still produces reliable results. Finally,
(f) shows a special case, where the gaze direction is in fact
pointing downward while only the SIAF-joint method can
recover this. The reason is that the iris elliptical shape in the
case (f) can correspond to two gaze directions, i.e., an upward
one and a downward one. Without knowing the eyeball center
information, it is unlikely to distinguish them.

D. On eyeball center estimation

In this section, we experimentally show the reason why
SIAF-joint outperforms SIAF. In particular, we find that the
eyeball center estimation is very important for accurate gaze
estimation in our method. To demonstrate this, we compare

the estimated eyeball center positions with the ground truth5.
The errors in pixel are shown in Table III.

These results clearly show that the SIAF-joint method
outperforms the SIAF method for all subjects by a large
margin. This is easy to understand since the SIAF-joint method
computes the eyeball center position by knowing all the
individual estimates from SIAF, and it has the ability to pick
up reliable estimates out of others. As a result, the average
error reduces from around 9 pixels to only 2 pixels. This is
satisfactory considering the typical eye image size of 150� 75
in our dataset.

Fig. 9 shows some intuitive examples of individual eyeball
center estimation for four subjects. More importantly, we
examine the relationship between the eyeball center error and
the final gaze estimation error. From the top row of Fig. 9, it
is clear that large eyeball center errors cause large gaze errors,
and vice versa. From the bottom figures, we see more directly
strong positive relations between them. These results demon-
strate that for the SIAF method, the eyeball center position is
the key to control the gaze estimation accuracy. If we are able
to estimate eyeball center position accurately, the gaze error
can be reduced to a small number depending on individuality.
Further removing this error requires an active calibration stage
to compensate the visual axis offset as mentioned in Sec. III-B,
while in our experiments it remains in the final results.

We use another plot, Fig. 10, to show how average gaze
error of SIAF-joint varies with average eyeball center error
for each of the twelve subjects. From these results, we can
make two conclusions. First, the positive relation between
gaze error and eyeball center error can still be seen in their
averages. This suggests further reducing average gaze error by
considering better eyeball center estimation methods for those

5Ground truth of the eyeball center is not available in the dataset. It is
obtained by examining the test data with smallest gaze estimation errors.
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Fig. 8: Comparison between three methods on individual cases. Estimated iris contours, 3D gaze directions and PGMs are
shown for each case.

TABLE III: Estimation errors of eyeball center position in pixel.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg.
SIAF 8.50 10.38 7.07 7.33 8.11 9.99 11.54 12.14 8.35 8.85 10.14 7.69 9.17

SIAF-joint 2.43 1.32 2.50 1.80 1.86 0.98 1.39 1.98 2.17 4.40 4.51 2.63 2.33

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg.
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Fig. 10: Average gaze errors and eyeball center errors for all
subjects by using SIAF-joint.

‘difficult’ subjects like S10 and S11. Second, such average
accuracies for gaze estimation are already promising for many
practical applications, considering that the proposed method is
unsupervised and it requires no special hardware.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose to estimate 3D human eye gaze
from a single eye image without active illumination. The key
idea is to analyze the shape of the elliptical iris contour.
Existing methods may face challenges in ellipse fitting because
perfect iris contour detection is difficult, especially with low

resolution eye images. To solve this problem, we propose
a model-driven Synthetic Iris Appearance Fitting (SIAF)
method. It synthesizes physically possible iris appearances
and then optimizes over this synthetic space to find the best
solution to explain the captured image. It also benefits from
advanced image analysis techniques to guarantee a robust
solution. Furthermore, when multiple eye images are available,
a SIAF-joint method is introduced to further improve the
gaze estimation accuracy, by assuming the consistency of
eyeball center position under a temporarily stable head pose.
Compared to many previous methods, our method achieves
reasonable accuracies while it does not require any special
hardware, training input or prior information. Future work
will consider further exploiting the eyeball center’s temporal
consistency in the SIAF-joint method to allow it work for
frequently changed head poses.
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